Structural and functional roles of desmin in mouse skeletal muscle during passive deformation.

نویسندگان

  • Sameer B Shah
  • Jennifer Davis
  • Noah Weisleder
  • Ioanna Kostavassili
  • Andrew D McCulloch
  • Evelyn Ralston
  • Yassemi Capetanaki
  • Richard L Lieber
چکیده

Mechanical interactions between desmin and Z-disks, costameres, and nuclei were measured during passive deformation of single muscle cells. Image processing and continuum kinematics were used to quantify the structural connectivity among these structures. Analysis of both wild-type and desmin-null fibers revealed that the costamere protein talin colocalized with the Z-disk protein alpha-actinin, even at very high strains and stresses. These data indicate that desmin is not essential for mechanical coupling of the costamere complex and the sarcomere lattice. Within the sarcomere lattice, significant differences in myofibrillar connectivity were revealed between passively deformed wild-type and desmin-null fibers. Connectivity in wild-type fibers was significantly greater compared to desmin-null fibers, demonstrating a significant functional connection between myofibrils that requires desmin. Passive mechanical analysis revealed that desmin may be partially responsible for regulating fiber volume, and consequently, fiber mechanical properties. Kinematic analysis of alpha-actinin strain fields revealed that knockout fibers transmitted less shear strain compared to wild-type fibers and experienced a slight increase in fiber volume. Finally, linkage of desmin intermediate filaments to muscle nuclei was strongly suggested based on extensive loss of nuclei positioning in the absence of desmin during passive fiber loading.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Skeletal muscle intermediate filaments form a stress-transmitting and stress-signaling network.

A fundamental requirement of cells is their ability to transduce and interpret their mechanical environment. This ability contributes to regulation of growth, differentiation and adaptation in many cell types. The intermediate filament (IF) system not only provides passive structural support to the cell, but recent evidence points to IF involvement in active biological processes such as signali...

متن کامل

Influences of Desmin and Keratin 19 on Passive Biomechanical Properties of Mouse Skeletal Muscle

In skeletal muscle fibers, forces must be transmitted between the plasma membrane and the intracellular contractile lattice, and within this lattice between adjacent myofibrils. Based on their prevalence, biomechanical properties and localization, desmin and keratin intermediate filaments (IFs) are likely to participate in structural connectivity and force transmission. We examined the passive ...

متن کامل

Disruption of both nesprin 1 and desmin results in nuclear anchorage defects and fibrosis in skeletal muscle.

Proper localization and anchorage of nuclei within skeletal muscle is critical for cellular function. Alterations in nuclear anchoring proteins modify a number of cellular functions including mechanotransduction, nuclear localization, chromatin positioning/compaction and overall organ function. In skeletal muscle, nesprin 1 and desmin are thought to link the nucleus to the cytoskeletal network....

متن کامل

Reduced myofibrillar connectivity and increased Z-disk width in nebulin-deficient skeletal muscle.

A prominent feature of striated muscle is the regular lateral alignment of adjacent sarcomeres. An important intermyofibrillar linking protein is the intermediate filament protein desmin, and based on biochemical and structural studies in primary cultures of myocytes it has been proposed that desmin interacts with the sarcomeric protein nebulin. Here we tested whether nebulin is part of a novel...

متن کامل

Evidence for increased myofibrillar mobility in desmin-null mouse skeletal muscle.

Quantitative electron microscopy was used to characterize the longitudinal mobility of myofibrils during muscle extension to investigate the functional roles of skeletal muscle intermediate filaments. Extensor digitorum longus fifth toe muscles from wild-type (+/+) and desmin-null (des -/-) animals were passively stretched to varying lengths, and the horizontal displacement of adjacent Z-disks ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 86 5  شماره 

صفحات  -

تاریخ انتشار 2004